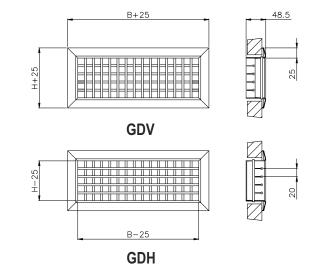


APLICAÇÃO

- São empregadas no insuflamento e na exaustão de ar em sistemas de ventilação e ar condicionado
- Montagem em tetos ou paredes

DESCRIÇÃO


- Fabricadas com perfis de alumínio de desenho exclusivo, possuem duas carreiras de aletas moveis, ajuntáveis uma a uma, que possibilitam regular alcance, altura e largura do fluxo de ar
- No modelo GDV, as aletas frontais são verticais e as posteriores, horizontais. No modelo GDH esta disposição é invertida.
- Como padrão, são fornecidas anodizadas na cor natural (A) e com furos na moldura externa para fixação por parafusos (F1).
- Sob consulta, são disponíveis com fixação por molas (**F2**) não recomendada em tetos fixação invisível (**F3**) e com pintura em epóxi-pó (**P**) cor definida pelo cliente

ACESSÓRIOS

- Registro de regulagem de fluxo (**RGD**), com moldura em aço, aletas convergentes, e pintura na cor preta
- Captor de ar (CA), em aço galvanizado e pintura na cor preta
- Moldura de montagem (MM) em aço galvanizado e pintura na cor preta. De emprego obrigatório com a fixação F2 e F3

DIMENSIONAMENTO RÁPIDO a) Vazão

- A Tabela 1 lista as dimensões padrão, a vazão recomendada de ar Qn para cada tamanho e o respectivo alcance Ln do jato de ar isotérmico para Vt=0,5 m/s, com aletas a 0º de inclinação (com influencia do teto - efeito Coanda)

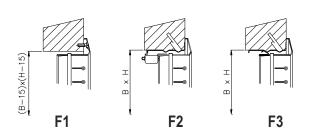
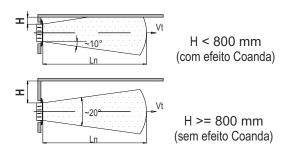


Tabela 1

Vazão Nominal Qn (m3/h) x Alcance Lt (m)											
Н		B (mm)									
(mm)		225	325	425	525	625	825	1025	1225		
125	Qn	185	280	375	470	565	755	945	1135		
125	Ln	4,7	5,6	6,4	7,0	7,6	8,4	9,1	9,6		
225	Qn	365	550	730	915	1100	1465	1835	2200		
225	Ln	6,6	8,0	9,2	10,2	11,0	12,5	13,7	14,7		
225	Qn	540	815	1085	1360	1630	2175	2720	3265		
325	Ln	8,1	9,8	11,3	12,5	13,7	15,6	17,2	18,6		
425	Qn	720	1080	1440	1805	2165	2885	3610	4330		
425	Ln	9,3	11,4	13,1	14,6	15,9	18,2	20	20		
525	Qn	900	1350	1800	2250	2700	3600	4500	5400		
525	Ln	10,4	12,7	14,7	16,3	17,8	20	20	20		

Dimensoes nao indicadas disponíveis sob consulta


DIMENSIONAMENTO RÁPIDO

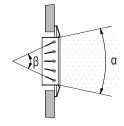
a) Vazão (continuação)

- Para obter o alcance Ln2 , na ausência de efeito Coanda, ou para outras velocidades terminais Vt do jato de ar, deve-se multiplicar Ln pelos fatores de correção da Tabela 2

Tabela 2

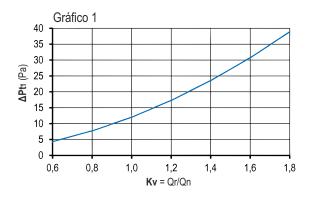
	0,2	0,35	0,50	0,65		
Com Coanda	H=0,3 Ln2 = Ln x		2,50	1,43	1,00	0,77
H=0,5		Ln2 = Ln x	2,20	1,26	0,88	0,68
H=0,7 Ln2		Ln2 = Ln x	1,88	1,07	0,75	0,58
Sem Coanda	H>=0,8	Ln2 = Ln x	1,75	1,0	0,70	0,54

- O alcance do jato de ar Lr, para grelhas operando com vazões Qr diferentes de Qn, é igual a:


$$Lr = Kv \times Ln$$
 onde

Kv =
$$\frac{Qr}{Qn}$$
 = $\frac{\text{vazão efetiva na grelha}}{\text{vazão nominal - Tabela 1}}$

- Alterando a inclinação das aletas das grelhas GDV e GDH, podemos alterar a amplitude do jato de ar. Nestes casos, conforme o angulo de inclinação β em cada serie de aletas, os valores de Ln, ΔPt e Lwa devem ser multiplicados pelos fatores de correção da Tab 3


Tabela 3

β	α	Ln	ΔPt	Lw	
45°	35°	x 0,7	x 1,3	+ 3	
90°	60°	x 0,5	x 1,6	+ 5	

b) Perda de carga

- A perda de carga ΔPt , na Vazão de operação Qr, é obtida no Gráfico 1 em função de Kv

c) Potencia sonora

 O nível de potencia sonora real, Lwr, nas condições de operação de cada grelha GDV ou GDH, é igual ao valor Lwa obtido no Gráfico 2, (conforme I ou R e Kv), somado ao fator de correção Ks, obtido na Tab 4, segundo suas dimensões B e H

Lwr = Lwa + Ks

Tabela 4

Tabela	Iautia 4									
	Fator de Correção Ks (dB(A))									
Н	B (mm)									
(mm)	225	225 325 425 525 625 825 1025 1225								
125	-9	-7	-6	-5	-4	-3	-2	-1		
225	-6	-4	-3	-2	-1	0	1	2		
325	-4	-2	-1	0	1	2	3	4		
425	-3	-1	0	1	2	3	4	5		
625	-2	0	1	2	3	4	5	6		

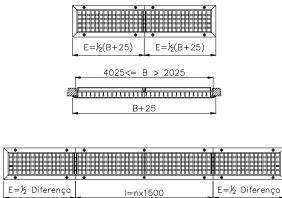
GDV-GDH GRELHAS DE DUPLA DEFLEXAO

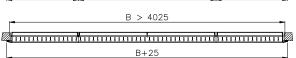
d) Determinação da Vazão efetiva

- Para avaliar a vazão real Qr a que esta submetida uma grelha deve-se, inicialmente, medir a velocidade de saída do ar em vários pontos de sua face e em seguida calcular a velocidade media Vm (m/s), do fluxo de ar.

Com Vm e Aeff, area efetiva da grelha obtida na Tab 5, tem-se:

 $Qr = Vm \times Aeff \times 1000$ (l/s) ou, $Qr = Vm \times Aeff \times 3600$ (m3/h)

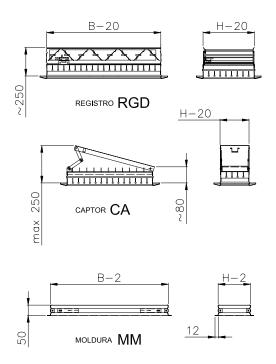

Tabela 5

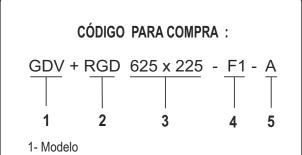

Área Efetiva Aeff (m2)									
Н	B (mm)								
(mm)	225	225 325 425 525 625 825 1025 1225						1225	
125	0,015	0,023	0,030	0,038	0,045	0,060	0,075	0,090	
225	0,029	0,044	0,058	0,073	0,087	0,117	0,146	0,175	
325	0,043	0,065	0,086	0,108	0,130	0,173	0,216	0,259	
425	0,057	0,086	0,115	0,143	0,172	0,229	0,287	0,344	
525	0,071	0,107	0,143	0,179	0,214	0,286	0,357	0,429	

e) Grelhas continuas

- As grelhas GDV e GDH são fabricadas em uma única peça, até a dimensão nominal B = 2025 mm

Acima dessa dimensão, são disponíveis grelhas GDV fabricadas em partes, para união no local da instalação, como ilustrado a seguir. A fixação é sempre feita com parafusos aparentes (F1)




f) Grelhas com registro RGD

- Para obter a perda de carga total Δ Pt2 e a potencia sonora total Lwa2, segundo o grau de abertura do registro, deve-se aplicar os fatores de correção da tabela abaixo, aos valores Lwa e Δ Pt obtidos para as grelhas sem registro.

GRAU DE ABERTU	IRA DO REGISTRO	100%	50%	25%
I lucuflemente	$\Delta Pt2 = \Delta Pt x$	1,0	2,3	4,5
I - Insuflamento	Lwa2 = Lwa +	0	14	24

g) Detalhes dos acessórios

- 2- Acessório
- 3- Dimensão B x H
- 4- Fixação
- 5- Acabamento

OBS: Códigos de características padrão podem ser omitidos